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Abstract. Phosphorus is is an element necessary for the development of crops and is thus commonly applied as fertilizer to 5 
sustain agricultural production. It occurs naturally at indefinite quantities, of uncertain quality, in phosphate rock formations, 

but also concentrates itself in urban and livestock wastewater wherefrom it is often lost as a pollutant. Recovering 

phosphorus from wastewater to partially meet agricultural demand can contribute to tackling both phosphorus pollution as 

well natural resource depletion. Here we show that humans discharge a maximum of 3.7 Mt P into wastewater thereby 

potentially satisfying 22% of the global fertilizer demand. Provided 2015 market dynamics, however, we conclude that only 10 
4% of this throughput is technologically and economically recoverable while rock phosphate products exist. Nonetheless, 

through this recovery, many wastewater treatment facilities can contribute to creating sustainable communities as well as 

protecting the environment while reducing their own operational cost. 
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1 Importance of Phosphorus 15 

Phosphorus (P) is an element necessary for the development of all living beings as it forms an unsubstitutable, key structural 

component of DNA and RNA. It is applied to crop lands in the form of organic fertilizers or synthetically as single or triple 

superphosphate, or mono-Ammonium or di-Ammonium Phosphate (DAP), which are easy to transport, to distribute over 

fields, and are readily absorbed by plants. The most essential resource for the production of synthetic phosphorus fertilizers 

is phosphate rock.  20 
 

The rates at which we exploit phosphate rock formations is out of proportion to the rates at which they form - essentially 

classifying phosphate rock as a non-renewable resource. Peak production of phosphate ore could occur as early as 2030 

(Cordell et al., 2009) with economically extractable (high quality and low heavy metal content) P resources becoming scarce 

or exhausted within the next 50 to 100 years (Smil, 2000; Steen, 1998; Van Vuuren et al., 2010)1,2. The prospect of 25 
phosphorus depletion threatens global food security, where especially regions of poor soil nutrition levels are vulnerable to 

its effects. The gradual depletion process will result in further reduction of fertilizer accissbility by small-holder and 

subsistence farmers that comprise areas already struggling to cope with food shortages (Pande and Savenije, 2016).3  

                                                
1 With the remaining, non-economically explotiable ore being too costly to process due to its poor quality – i.e. low phosphorus and high 
heavy metal content. 
2 Others authors predict that reserves will last another 300-400 years (van Kauwenbergh, 2010) 
3 Sub-Saharan Africa (SSA) is one such region, as nearly 75% of SSA’s agricultural soils are nutrient deficient already contributing 
significantly to the crop yield gaps (Sanchez et al., 1997). 
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1.1 Turning brown waste to green gold 

The introduction of intensified (P) fertilization during the Green Revolution of the 1960’s demonstrated P’s significant 

potential to improve crop yields, but also the dangers it poses to the environment. Through seepage and runoff processes, as 

well as the discharge of improperly treated wastewater, phosphorus and other nutrient excesses come into contact with open 

surface waters, cause pollution, and lead to a loss in aquatic biodiversity (Sims et al., 2000).4 As a limiting nutrient, the 5 
smallest quantity of phosphorus in water can spark the growth of disproportionately large algal blooms. These have a 

detrimental effect on water based ecosystems in suffocating aquatic life through eutrophication (EPA, 2010).5 If excess 

fertilization is a major threat to water quality around the world, then why not extract this excess from the water system and 

put it back in the food chain? Proper nutrient management practice in tandem with nutrient recovery from rural and urban 

water systems may potentially be an important strategy to reduce phosphorus pollution by reducing phosphorus discharge to 10 
the environment while simultaneously increasing phosphorus supply for food production. 

 

Numerous phosphorus recovery technologies are available; their effectiveness varying, among others, with local wastewater 

composition and existing wastewater treatment infrastructure. While there exist numerous studies on the efficiency of 

specific recovery technologies, on the potential recovery from wastewater, and on the duration of the rock phosphate 15 
reserves, there are few studies that evaluate recovery in a global and economic context. As such, the adoption of phosphorus 

recovery technologies is often challenged by (perceived) economic infeasibility or lack of economic incentives and social 

stigma. Hypothetically, however, the economic feasibility of recovery is not globally homogeneous but varies in space and 

time. Spatially, the global accretion of phosphorus in wastewater provides recovered products with a (diffused) location-

defined competitive advantage over the geographically concentrated rock phosphate mines (fig. 1). Temporally, the gradual 20 
depletion of rock phosphate reserves, and the unstable but increasing price trends for non-sustainable phosphatic fertilizers 

(IndexMundi, 2017), will improve the economic appeal for recovery over time (fig. 2).6  

1.2 Motivation 

Though various factors such as the political will, technology and knowledge are already there to facilitate the transitioning of 

the phosphorus market, the economic appeal for recovery still lags behind. Favourable economic prospectives, however, are 25 
spatially diverse and will strengthen over time. Global studies that identify locations and conditions for competitive 

phosphorus recovery at subnational scale could accelerate this transition but are currently inexistent. This study aims to fill 

that gap by identifying and connecting those areas where there exist high potentials for phosphorus production, to those areas 

of high agricultural demand. Revealing where recovery may be economically feasible may then stimulate the implementation 

of recovery technologies, or at least promote further investigation in those areas that show a high potential for recovery. 30 
 

The phosphorus cycle is delineated by combination of both social and physical attributes and as such demands a coupled 

                                                
4 In 1990 about 43% of the grassland and 82% of the maize land in the Netherlands was approximated to be saturated in nutrients due to 
over fertilisation (Breeuwsma and Silva, 1992). As a result, the nutrient concentrations in surface waters in The Netherlands still 
consistently exceed water quality standards (Oenema et al., 2007; Oenema and Roest, 1998). 
5 These deoxygenated “dead zones” can be found in both lakes and seas, and affect an estimated 245,000 km2 of marine ecosystems 
(Corcoran et al., 2010).   
6 Over the past 15 years the phosphorus price of DAP has increased from 665 [$ t-1] to 1,552 [$ t-1]. In that same period, the price has been 
as high as 5,217 [$ t-1] (2008) and as low as 656 [$ t-1] (2002) (IndexMundi, 2017). 
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human water systems perspective. A socio-hydrological approach is endeavored as here both these attributes are expressively 

and emphatically accounted for (Sivapalan et al., 2012). The social component, however, of this coupled human-phosphorus 

system is confined to the characteristics of a distinct economic nature. The materials and methods employed in assessing the 

recovery potential of P from waste water at global scale is therefore interdisciplinary and extensive, and covers largely 

economics within a sciences context. 5 

2 Materials and Methods 

An integrated approach is required to identify locations and conditions for competitive phosphorus recovery at global scale. 

This comprises of: 

1. Identification of sites and quantities: Identifying where in the world phosphorus-laden wastewaters and 

agricultural areas concentrate themselves, and assessing the associated, approximate phosphorus production and 10 
demand quantities. 

2. Determination of node prices: Approximating  the minimum production costs of different production sites, and 

maximum paying prices of varying crop sites respectively. 

3. Modelling international trade in phosphorus, which involves: 

a. Determination of global market price: Determining an international, free-market price for 15 
phosphorus as a function of P-quantities, prices, and distances between the different sites. 

b. Trade flows corresponding to the market price: Visualizing a realistic network of phosphorus 

trade fluxes for different market prices. 

Geographic Information System (GIS) tools (Q-GIS 2.14) (Quantum GIS Development Team, 2017) are used to pre-process 

spatial data for utilization by the trade network model built in Python 3.6.  20 

2.1 Identification of Sites and Quantities 

Using population density maps (Robinson et al., 2014), globally generalized phosphorus excretion rates (Barker, Hodges, & 

Walls, 2001; CBS, 2014; Gilmour, Blackwood, Comber, & Thornell, 2008), and phosphate mine production rates (USGS, 

2002, 2007), a crude, global mapping of phosphorus production sites is achieved. The sustainable phosphorus production 

potential is roughly approximated through globally generalized, maximum phosphorus throughput figures and population 25 
density maps for humans, cows, pigs and chicken (see Table S1 in supplementary materials), which are related through the 

following formulation: 

 

𝑆"# = (𝑃'# ∗ 𝑂"") ∗ 𝐸,#          (1) 

 30 
where 𝑆"# is the maximum organic phosphorus production density [kg km-2 a-1]; 𝑃'# is the population density [h km-2];	𝑂""  

is the phosphorus throughput rate [kg h-1a-1]; and 𝐸,# is the estimated recovery efficiency [-] for the group O, of humans, 

pigs, livestock, or poultry (see section 2.2). 

 

The phosphorus demand density is assessed through crop harvested area maps for six major crops. The P demands for maize, 35 
wheat, rice, sorghum, soy bean, and potato are approximated as the minimum amount of phopshorus needed to realize water-
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constrained yield. These yields are determined through the evaporation-transpiration deficit approach (Steduto et al., 2012). 

The adapted equation is described as followed (eq. 2): 
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 5 
where 𝑌A is the actual yield [kg km-2 a1]; 𝑌B is the optimal yield [kg km-2 a-1]; 𝐾4 is the crop coefficient [-]; 𝐸A is the actual 

evaporation-transpiration [mm a-1 Area-1]; 𝑇D is the crop growing period [d]; 𝐴F is the fractional area harvested [-]; and C [-] 

is a correction factor that accounts for the induced error by the ‘annual approach’ to the evapotranspiration-deficit equation – 

scaling the maximum yield ratio globally to be no greater than 1.  𝐸B is the evaporation-transpiration for optimal yield [mm 

a-1 km2], which is assumed equal to the crop water requirement for optimal yield. The associated phosphorus requirement for 10 
this yield is determined through a linear regression between yield and P-fertilizer application as described in eq. 3. 

 

DHI =
JK
JL
∗ 𝑃MNOP ∗ AR           (3) 

 

where DHI is the total P-demand [t ha-1a-1]; 𝑃MNOP  is the crop specific P-demand for optimal yield [t ha-1]; and AR is the crop 15 
harvested area [ha-1]. The parameters per crop are summarized in Table S2 of the Supplementary Materials. These six crops 

make up roughly 56% of the global demand (Heffer, 2009). Although spatially unrepresentative of the actual global 

phosphorus demand distribution, the total demand can be approached by dividing the pixel values for the six major crops by 

0.56 (56%).  

 20 
The areas of major production and consumption densities are aggregated into nodes that are described by a coordinate 

position, a class (group: urban or livestock, or crop type), and a quantity of yearly phosphorus supply or demand. Nodes with 

a production of less than one kilo tonne per year for livestock, and less than 400 tonnes demand per year for urban/rural sites, 

are considered insignificant in the global context and are therefore excluded from further consideration. This constrains the 

total number of actors, reduces the complexity of the network, reduces the processing time required, and improves 25 
visualization of the results. In the visualizations, the remaining nodes will be stylized to vary in size according to their annual 

P production and demand potentials [kt a-1] to make the significant actors more easily identifiable. 

2.2 Determination of Node Prices 

Whether trade is possible between a demand and a production node depends on the transportation and production costs of the 

production node and the maximum bid price of the demand node. The production cost varies depending on the recovery 30 
technology, whose feasibility for implementation depends on wastewater composition and existing infrastructure. In this 

study, municipal wastewater composition is assumed roughly, globally homogenous, while the Sustainable Development 

Goals dataset on percent of urban population with access to sanitation is used to derive an approximation on the 

development status of existing sanitary infrastructure (WHO/UNICEF JMP, 2015). A high  (>90%) national percentage of 

urban population with access to saniation is likely to be indicative of highly developed countries that observe stricter effluent 35 
standards and that therefore have, or are working towards upgrading, conventional wastewater treatment plants (WWTP) for 
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biological nutrient recovery (BNR) or chemical phosphorus removal. The phosphorus recovery costs for the BNR-WWTP 

group of nodes are those associated with the investment in a large Ostara® Pearl Reactor for struvite precipitation, 

recovering 20% of the influent wastewater’s phosphorus loading (Schoumans et al., 2015). Although other struvite recovery 

technologies are available, this one was chosen given its commercially effective implementation in various different 

countries. The production cost for the highly developed group is reduced due to savings in uncontrolled struvite scaling 5 
maintenance and sludge handling. Areas with intermediate urban access (40-90%) are assumed to be serviced by a simple, 

centralised wastewater treatment facility. The technology investment cost for these nodes are the same as for the the highly 

developed infrastructure group but excluding this time the sludge handling cost savings. Lastly, low urban access (<40%) is 

assumed to be indicative of low sanitary development and thus offers the flexibility to adopt more novel, less water 

dependant forms of sanitation. The technology applied for these areas are source separating-, dry composting toilets, where 10 
urine and fecal compost are collected separately. The urine is collected by 40,000 litre tank trucks and processed at a 

centralized struvite precipitation facility. Fecal compost is collected, dried and processed into compost pellets at a central 

facility. For livestock farms this compost pelleting technology is also applied, but occurs on-site.  

 

The recovery efficiency factors (𝐸,#) in eq. 1 depend on the recovery technology applied for each organism group O 15 
(humans, pigs, poultry, cows). A phosphorus recovery efficiency of 20% of the influent is taken for struvite crystallization in 

wastewater (Schoumans et al., 2015); while a 90% efficiency can easily be achieved when struvite precipitation is applied on 

source-separated urine (Wilsenach et al., 2007). An efficiency of 85% and 75% for cattle and swine, and poultry respectively 

is assumed for pelletization of composted livestock waste. 

 20 
For production nodes, a generalized struvite precipitation cost is determined by the following (eq. 4): 

 

𝑓BTPT = UV∗WX7YZV

WX7
− 𝑆 +	\

]

^
          (4) 

 

where 𝑓BTPT  is the minimum price for phosphorus produced at node i [$ t-1]; 𝑅` is the resource cost [$ t-1] P;  fixed 25 
operational cost [$];	𝑆"\  is the total phosphorus production potential [t]. Where relevant, S is the struvite scaling and sludge 

handling cost savings [$ t-1] P (i.e. for for BNR plants); 𝑇T is the intracity transport cost of collection [$ t-1] (i.e for source-

separating toilets); and 𝜌 is the proportion of phosphorus by weight of the transported material [kg kg-1], which are 0.066% 

and 0.46% for urine and dried, faecal, toilet compost respectively (Bjorn Vinnerås, 2001). The annual fixed operational costs 

are taken as the annual costs minus the resource costs as reported by Egle (n.d.). The resource costs (i.e. MgCl2) are 30 
calculated separately. Mostly, these are  a function of the magnesium chloride price (𝑃B)	and the ratio of magnesium 

required per ton of phosphorus (𝑅BN). For BNR plants, a struvite and sludge handling cost savings is included of 0.89 [$ kg-

1] struvite removed (Shu et al., 2006) This essentially allows BNR plants to supply struvite for free (excl. transportation 

costs). The additional resource cost for the dry-toilet solution is attributed to the collection of waste and a pelletization cost 

of $30 [$ t-1] compost (Masayuki Hara, 2001). 𝑇T is described as followed (eq. 5):  35 
 

𝑇T =	𝐷OA
"c∗6deY
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Where 𝐷OA is the average distance of a return journey for a tanker truck in servicing the city, approximated at 20 [km]; 𝑃j  is 

the price of diesel [$ L-1]; 𝐸kO is the fuel efficiency of the tanker truck, 0.016 [L km-1]; 𝐿mO is the labour wage, 10 [$ h-1];  

𝑉okO	is the average velocity of the truck in the city, 50 [km h-1]; 𝑊kO  is the truck load weight, 40 [t]. 

 5 
The maximum price that demand nodes are willing to pay depends on the marginal value of phosphorus. This varies per crop 

type and can be described as followed (eq. 6): 

 

					𝑓BAqP =
0rse
t ∗>1t	

"rse
t 	

∗ 		𝑅P          (6) 

 10 
where 𝑓BAqP  is the maximum price for phosphorus [$ t-1]; 𝑌MNOP  is the optimal yield [t ha-1]; 𝐶AP is the crop price in year a [$ t-

1]; 𝑃MNOP is the optimum fertilizer dosage rate (equal to total P-requirement for optimal, water constrained yield) [t ha-1]; and 

𝑅P is the ratio of fertilizer cost to total production costs [-], for crop n.  

 

Lastly, the transportation costs are determined with as-the-crow-flies distances with the parameters given in Table S3 (see 15 
Supplementary Materials) substituted into the following transport cost equation (eq. 7):  

 

𝑇m
T,P = 𝐷T,P w𝐹i ∗

"y∗6zY {|
ghz

iz
+ 𝐹k ∗
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ghd
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}        (7) 

 

where 𝑇m
T,P is the transportation cost from node i to node n [$ t-1]; 𝐷T,P is the distance between node i and node n  [km]; 𝑃~  is 20 

a bunker fuel price [$ t-1]; 𝑃j  is the price of diesel [$ L-1]; 𝐸i is the fuel efficiency of a full handy size bulk carrier [t d-1]; 𝐸k 

is the fuel efficiency of a 2x30 tonne truck combination [L km-1]; 𝐶� is the fixed costs per ship [$ d-1]; 𝐿m  is the labour wage 

[$ h-1];  𝑉oi is the average velocity of the carrier over water [km d-1]; 𝑉ok	is the average velocity of the truck over land [km h-

1]; 𝑊i  is the carrier load weight [t]; 𝑊k  is the truck load weight [t]. 	𝐹i and 𝐹k are the fractions of the total distance that is 

travelled over land and over sea. The model at present does not distinguish between the transportation  over land and over 25 
sea based on observed geography. Instead the model employs a cumulative probability curve that approximates the 

proportion of the total distance likely to have been traversed over water, 	𝐹i (eq. 8); and over land, 𝐹k (eq. 9), where it is 

assumed that at least 15% of the total distance is always transversed over land. 

𝐹� =
��

�Y��
���
�

            (8) 

𝐹k =
��

�Y�
���
�
+ 15	           (9) 30 

where µ and S are function shape constants of 500 and 100 [-], respectively.  
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2.3 Trade model  

First, the model determines the optimal price for international phosphorus trade. Then, a trade network is created that 

identifies the nodes involved in trade and quantifies the amounts they exchange at the determined price. These two steps are 

taken for three different market scenarios: 

1) Current market - mine supplied products only: The current phosphorus market is strongly rock-phosphate oriented. 5 
When the model runs the data for a ‘current market’ scenario, only rock phosphate products are available on the 

market. 

2) Future market - both mine and recovered products: Recovered phosphorus is likely to become a more important 

product in the future market. When the model runs the data for a ‘future market’ scenario, it is assumed that both rock 

phosphate as well as recovered phosphorus products partake. 10 
3) Far-Future market - only recovered products: In the far future market, most rock phosphate reserves will have been 

depleted. When the model runs the data for a ‘far-future’ scenario, it is assumed that rock phosphates no longer take 

part in the market which is then solely dominated by sustainable, recovered products.  

 

2.3.1. Determination of global market price 15 
The global market price is determined as the price at which total quantity of phosphorus demanded is equal to the quantity 

supplied (i.e. the market for P is cleared; (Arrow and Debreu, 1954)). This is approximated as the point where global demand 

function for phosphorus intersects the global supply function. The demand function is the locus of the maximum prices at 

which demand nodes are willing and able to purchase phosphorus, and the supply function is the locus of minimum prices at 

which supply nodes can sell certain amounts of phosphorus without going out of business (i.e. without making a loss). The 20 
Supplementary Text provides an illustration of how market prices for the three scenarios are determined and how 

transportation costs complicate the determination of supply function and hence the determination of global market price for 

phosphorus.  

 

2.3.2. Quantification of Trade Flows 25 

The following steps are taken in order to identify trade flows. Firstly, a list of all possible combinations of supply and 

demand nodes is created, which is passed through two ‘filters’ for a given ‘hypothetical market’ price. The first filter 

removes the pairs that can never trade with each other based on their combination of the minimum production costs, the 

maximum price boundary and transportation costs (which happens when productions costs are higher than the revenues that 

a supply node can generate by selling to a demand node). The second filter removes node pairs which cannot trade with each 30 
other at a given ‘hypothetical market’ price imposed on the network. This occurs when the production cost is above the 

imposed market price. 

In the model, phosphorus consumers will look for the cheapest suppliers. The matter becomes obscure here as, in reality, 

there are no cheaper or more expensive suppliers when there is a single, set market price (note that single set market price is 

different from the ‘hypothetical market’ price mentioned above). However, supply nodes that could supply at prices far 35 
lower than the set market price (due to lower production costs) have a competitive advantage over those that cannot. The 

difference between these ‘hypothetical market’- and actual market price shows how competitive a node is. If a node pair is 
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able to trade at a much lower price than market price, then the model assumes that this trade occurs first. These nodes have 

the power to undercut their (more expensive) competitors and safeguard their own favourable trading position. This concept 

(i.e. the notion of hypothetical markets) is essentially used to identify most likely trade partners so that in the end a global 

trade network can be created that trades at one global price of recycled P. 

 5 
For different ‘hypothetical market’ prices, a list of trade partners is obtained by executing the trade at each price, and 

updating the list in terms of total phosphorus quantity (Q) demanded by demand node (D) number n, or supplied by supply 

node (S) number i (𝐷�P, and 𝑆�T , for demand and supply respectively). The amount traded (𝑄(T,P))	between each node pair is 

taken to be equal to the minimum of supply or demand as formulated below (eq. 10): 

 10 

𝑄(T,P) = �
𝑆�T 									𝑖𝑓	𝐷�P > 𝑆�T ;				
𝐷�P									𝑖𝑓	𝑆�T > 𝐷�P;					

         (10) 

 

The supply available and quantity demanded at each supply demand nodes are updated as follows (eq. 11), 

 

 
	𝑆�T = 0,									𝐷�P = 		𝐷�P −	𝑄(T,P)								𝑖𝑓	𝐷�P > 𝑆�T ;
	𝐷�P 	= 0,								𝑆�T = 	 𝑆�T −	𝑄(T,P)										𝑖𝑓	𝑆�T > 𝐷�P;

	       (11) 15 

 

By eq. 11, one of the nodes will have 0 production capacity or demand after each trade, and so all possible trade 

combinations with that node are removed from the list of possible trade partners for that price. This process is continued 

until the list is empty and thus all feasible trade has been conducted for that price. The traded pairs are then connected 

through a series of colored vertices on maps to visualize what the trade network looks like. 20 

2.4. Simulation years 

Since most of the data is only available for 2005, the model is designed around the balances of that year. Variable data and 

parameters such as human and livestock population count, fuel prices, crop value, etc., are adjusted to match the statistical 

figures for other years when simulating for these other years. For example, the human population density raster used to 

determine phosphorus production potential was made for 2005 (CIESIN, 2016). In determining the population density and 25 
therefore phosphorus production potential of another year, the model adjusts the 2005 population figure through eq. 12 to 

approach a new population estimate.  

 

𝑃4 = 𝑃����(1 + 0.0122)4�����         (12) 

 30 
Where 𝑃4 is the population density raster for year y; 𝑃���� is the population density raster for 2005; and 0.0122 represents the 

2005 to 2015 averaged, global human population growth rate of 1.22% per year (World Bank, n.d.). The social phernomena 

of migration and urbanization are not considered in the process. The model is run for 2005, 2006, 2011, and 2015 through 

such manner. The adjusted parameters and how their adjusted values compare to the original 2005 data, is shown in Table S4 

of the Supplementary Materials. Running the model for several years will not only reveal changes in market dynamics, but 35 
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also suits a validation purpose. When the model  run for a mines-only (current market) scenario, it produces prices for mined 

P that may be validated against the currently recorded prices for mined P. 

3. Results 

3.1. Identification of Sites and Quantities 

The spatial distribution of phosphorus recovery potential [t km-2 a-1] from livestock and humans, as well the global 5 
agricultural phosphorus demand, are presented in the Supplementary Figures (S1) at a resolution of 0.08 decimal degree in 

WGS84 projection. The associated data is summarized per continent in Table 1.  

 

Some continents (i.e. South and North America) show significant disproportionalities in recoverable P from waste vs. 

phosphorus demand for crop production (Table 1). (Virtual) phosphorus trade (e.g. soy bean products) can play an important 10 
role in determining these continental budget surpluses and deficits. In the end, however, the global recovered phosphorus 

budget is only slightly off balance at 109% total production potential to demand. This global (9%) surplus suggests that there 

is an inherent overestimation of the phosphorus excretion rates or underestimation of the agricultural phosphorus demand, or 

that some degree of soil nutrient mining by the crops is considered in the phosphorus requirement values presented in 

‘Fertilizers and Their Use’ (FAO & IFA, 2000). Another explanation for the this disproportion is that non-agricultural 15 
consumers of phosphorus (e.g. medicine and detergents industries) are not considered as actors even though their consumed 

products are included in the wastewater discharge figures. 

 

Unfortunately, however, it is not feasible to recover every ounce of phosphorus excreted, or to fertilize every crop patch 

everywhere. More realistically, recovery will be economically efficient in areas of high population or livestock density while 20 
fertilisation will benefit mainly areas of intensive agriculture. A more realistic assessment of the contribution of recovered 

products to the global P demand can be made by disregarding production and demand areas of low P density, and selecting 

only for major production and demand nodes. The results below are discussed following this second more refined and 

conservative definition of production potential. 

3.2. Determination of node prices 25 
The minimum production costs for the production nodes has been determined (fig. 3). The low density of phosphorus (1% 

phosphorus by weight) results in relatively high production and transportation costs of compost pellets per tonne of 

phosphorus content. The added value that is not considered in the model is that compost pellets also upgrade the soil in 

providing substantial amounts of nitrogen and organic matter as well. The significant, general difference in the production 

cost of P from recycled sources with that of mines means that transportation costs, i.e. distance between trading nodes and 30 
fuel costs, will have to play a critical role if sustainable trade in recycled P is to be feasible.  

3.3. Trade model results  

Based on the methodology presented in section 2, phosphorus quantities, costs, and the distances between the nodes are used 

to determine market prices at which trade may occur globally to evaluate the economically constrained recovery potential. 

  35 
3.3.1.  Model Validation 
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Before evaluating the model results, it was necessary to determinehow well or poorly the model approximates the market 

prices for different years. The model is therefore run for a mines only scenario for 2005, 2006, 2011 and 2015. The produced 

price ranges for unsustainably sourced phosphorus can then be compared to the observed price ranges for phosphorus in 

conventional DAP fertiliser for a quick performance assessment (fig. 4). In addition to this, the model results for the other 

two (more hypothetical) modelling scenarios are included as well. 5 
 

The boxplots of calculated prices in fig. 4 show plausible ranges for P prices at which trade can occur at global scale. The 

whiskers on the grey boxes for the observed prices (grey) represent the range within which the price fluctuated during that 

year, the box itself shows the upper and lower quartiles for that data and the orange line indicates the median. Note that the 

price range estimated by the model closely follows the range of observed prices within that year for all the simulation years 10 
(i.e. 2005, 2006, 2011 and 2015). The price ranges for simulation year 2015 specifically are presented in Table 2, where the 

minimum price represents the model determined lower boundary of the range, the maximum its upper boundary, and the 

optimum represents the most realistic price approximation as determined by the model.  

 

3.3.2. Trade flows of conventional and recycled P 15 
The network maps for the ‘optimum’ market prices from Table 2 are presented for scenario two and three in figures 5 and 6, 

respectively. Optimal trade in a market of recovered and mined phosphorus products (scenario 2) occurs at a market price of 

1,950 [$ t-1] with 16.81 [Mt] being traded in total, of which 0.13 [Mt] is traded sustainably (0.8% of total demand). For a 

market of only recovered products (scenario 3) optimal trade occurs at a price of 5,700 [$ t-1] with 6.42 [Mt] being traded – 

all of which sustainable but only satisfying 38% of the total demand. The high recovery potential and close proximity of 20 
recovery nodes to agricultural demand nodes makes phosphorus recovery in Asia particularly competitive in both scenarios. 

The struvite scaling maintenance and sludge handling cost savings in developed areas with sophisticated wastewater 

treatment plants results in the potential for competitive phosphorus trade in Europe and the United States also. 

 

Recovered phosphorus is considered as the only source in the third scenario and with this only 38% of the global agricultural 25 
demand can be met. Because compost pellets, which due to their low P-density are far more expensive per tonne phosphorus 

than other products, the market prices for phosphorus are driven upwards in this scenario. This is a result of the model 

economics, where the different commodities (struvite vs. compost pellets) are treated as products acting on the same market - 

discriminated only based on their phosphorus content. When struvite producers observe consumers buying expensive 

compost pellets due to the depletion of struvite suppliers, the intial struvite sellers will adjust their prices upwards forcing 30 
consumers to pay pay more for the same amount for  P. The inverse would be true also if agricultural consumers observed 

cheaper trades occurring among other actors. They would then demand lower prices from their producer or switch producer 

all together, both resulting in lower market prices. 

 

4 Discussion 35 
 

Several assumptions and simplifications have been made in this study that may have implications on its results. Inaccuracies 

in assessing the urban and livestock production potentials due to generalization of throughput figures, the lack of 

consideration for trans-Atlantic trade, the as-the-crow-flies distance method, assumptions of free trade, and other economic 

simplifications, all possibly contribute to errors in market price determination and patterns of trade flow.  Most scrutiny of 40 
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the results may be directed to assumptions on technological potential of recovery. The technological potential is assessed 

through the dataset on urban population with access to improved sanitary facilities – where improved facilities are defined 

as those designed to hygienically separate excreta from human contact. These may include anything ranging from pit latrines 

to flushed piped systems. A country’s scoring in this dataset is then used as an indicator for the state of sanitary development 

in that country. Struvite precipitation from digestor liquor is assumed to be the technology appropriate for the highest scoring 5 
countries (>90% access). However, there is no guarantee that struvite precipitation from anaerobic digestor liquor is possible 

for nodes in these countries, seeing as by definition improved sanitary facilities 100% access may indicate that 100% of the 

urban population has access to a pit latrine. Even if information on the wastewater treatemeant infrastructure was known at 

all locations, then the phosphorus recovery efficiency from these rich sidestreams is still likely vary due to differences in 

phosphorus concentration of the influent. In summary, large uncertainties in the feasability to recover arise from the 10 
generalised technological assessment carried out. The assumptions are partially justified by the global and explorative nature 

of this study on potentials. 

 

Despite the lack of studies on the global economic potential for recovery to compare results with, the results on total 

potentials and struvite pricing are well aligned to those of other studies. Above we determined that 3.7 [Mt a-1] of 15 
phosphorus is maximally recoverable from wastewater, satisfying 20% of the reported 18.52 [Mt a-1] agricultural demand  

(Heffer and Prud’homme, 2016), and 22% of determine agricultural demand (16.81 [Mt a-1] for 2015). Smil (2000) found 3 

[Mt/year] potentially recoverable, which would account for 20-25% of the global agricultural demand. Extrapolating Smil’s 

(2000) figure proportionally with a population growth of 1.22% per year would result in a potential urban production of 3.6 

[Mt/year] in 2015, a less than 3% difference from the potential  reported. Mihelcic et al. (2011), through a study on diets and 20 
phosphorus excretion, concludes that the phosphorus excretion rates per individual can vary as much as from 0.18 P [kg a-1] 

in the Democratic People’s Republic of Congo, to 0.73 P [kg a-1] in Israel. This confirms that our ‘Western’ approximation 

for phosphorus excretion of 0.77 P [kg a-1] is on the global high end. For 2009, nonetheless, Mihelcic et al. (2011) 

determined that 3.4 P [Mt a-1] of human waste produced could account for 22% of the 15 [Mt a-1] of global phosphorus 

demand. These values are in good agreement with 3.7 P [Mt a-1] urban waste and 16.8 P [Mt a-1] phosphorus demand 25 
estimated by this study, yielding a 20% maximum potential satisfaction of global demand through human recovered waste in 

2015. Koppelaar and Weikard (2013) estimated the potential of use reduction and recycling measures on the global 

phosphorus balance for 2009. In this balance, the phosphorus loading of human excreta amounts to 4.2 P [Mt/year], which is 

25% of their 16.7 P [Mt a-1] agricultural demand. They also estimated total domestic animal manure production 28.3 [Mt a-1] 

of P. This is distinclty higher than this study’s 17.11 P [Mt/year] livestock P production. This study limits livestock 30 
production to only that of cattle, swine and poultry excreted phosphorus, with recovery rates of 75-85%, and a cattle pasture 

period of 180 days during which excreted phosphorus is returned directly to fields and recovery is not possible. Provided the 

indistinction between beef and dairy cattle in the population density map, and the significant difference of phosphorus 

excretion rates of both beef and dairy cattle, it is not unlikely that the phosphorus production rate of all cows is in total much 

higher than currently approximated in this study. Koppelaar and Weikard’s (2013) results would suggest an even greater 35 
potential for the recovery of livestock excreted phosphorus than the otherwise conservative estimate produced in this study. 

 

The model estimates struvite production costs ranging from 0 to 560 [$ t-1], variable with the nature and location of the 

recovery site. Phopshorus market prices instead are determined to range from 273 to 391 [$ t-1] over the different years 
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modelled for in a market with rock phosphate products. The supply deficit resulting from a scenario without rock 

phosphates, would drive these sale prices upwards to a range of 570 to 955 [$ t-1].  These costs and prices are difficult to 

compare, as no found study has evaluated the economic potential of recovery at global scale. Instead, there exist case-studies 

on the feasibility for phosphorus recovery at specific sites. Ueno and Fujii (2001) observed that struvite obtained from 

wastewater in Japan is sold to fertilizer companies at rates of 300 [$ t-1].  A market study by Münch and Barr (2001) revealed 5 
that struvite can be sold in Australia for between 220 and 370 [$ t-1]. Shu et al. (2006), however, estimated that the market 

price of struvite is around 550 [$ t-1]. Based on fertilizer market estimation, Dockhorn (2009) estimated far higher prices than 

those mentioned before, and valued recovered struvite at 900 [$ t-1]. Dockhorn’s high recovered product prices are 

approached in the model by the 2015 struvite market price, 955 [$ t-1], for a market scenario with no rock phosphate 

competition and a severe P supply deficit. It appears that the model determined price range for global struvite production 10 
covers the spectrum of different production costs as determined in various different other studies.  

 

5 Conclusion 
 

Despite simplifying assumptions, the developed model creates realistic trade networks for different phosphorus supply 15 
scenarios, for different prices, at subnational resolution. However, the credibility of model outputs are only supported by an 

accurate simulation of DAP prices when run for a mine supply scenario because data and/or other studies on the purely 

hypothetical nature of global trade in sustainably recovered P is lacking. 

 

The calculated total potential contribution of recovered phosphorus to the agricultural demand matched the conclusions of 20 
various other studies. In range with results by Smil (2000), Mihelcic et al. (2011), and Koppelaar and Weikard (2013), this 

study revealed that recovery of all (2005) human excreted phosphorus can potentially accommodate 22% of the determined, 

total agricultural phosphorus demand. Additionally, 89% of the global agricultural demand can potentially be satisfied 

through the recovery of phosphorus from all cattle, poultry and swine populations. More realistically limiting phosphorus 

recovery only to centers of high human and livestock population density, only 63% of the total agricultural demand can be 25 
met. 

 

Considering economic variables, however, it is estimated that in a 2015 market that also offers cheaper rock based fertilizer 

alternatives, only 0.13 [Mt a-1], or 0.8% of agricultural phosphorus demand can be competitively accommodated. In a market 

with no rock based alternatives, 38% of the agricultural demand can be met by recovering phosphorous from livestock and 30 
urban centres. This supply deficit will result in very high phosphorus prices. For both scenarios, maps reveal that this 

recovery is especially feasible in densely populated cities that lie in close proximity to areas of intensive agriculture, and that 

are situated far from large P-mines. Particularly Asia shows potential for economically competitive phosphorus recovery 

from wastewater. With struvite as a byproduct for reducing scaling maintenance and sludge handlings costs, trade in Europe 

and the Unites States also shows a high potential. The production and transportation cost per tonne P for compost pellets 35 
from source-separated faecal matter and livestock manure is high due to the relatively low phosphorus content. These 

products can hardly compete in the international phosphorus market and drive prices upwards when the demand for P is 

severe, e.g. when rock phosphate products are absent. 
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Recognizing that there is no single solution for solving phosphorus pollution and insecurity (Cordell and White, 2011), a 

reassessment of how we use and treat wastewater may provide an important contribution. The recovery of phosphorus from 

wastewater will become more appealing as populations grow and urbanize and phosphorus reserves deplete, and it is 

therefore important that more global economic assessments are done to determine how the widespread implementation of 

phosphorus recovery technologies can be stimulated, and to what extent these can be accommodated in the changing 5 
sanitation paradigm. Until then, current and future cases where phosphorus recovery is implemented will serve as prime 

examples from which governments can learn how to regulate phosphorus recovery in such a way that maximum benefits are 

achieved for both the environment and the urban community, as well as the livestock and agricultural sectors. 
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Figure 1. Estimated global phosphorus reserve distribution. The vast majority (73%) of estimated natural reserves lie in Moroccan 
and West-Saharan territories (USGS, 2017). 
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Figure 2. Nominal Phosphate rock and DAP price trends (IndexMundi, 2017). The rock phosphate and DAP price trend can be 
characterized as stable, gradually increasing, and vulnerable to market dynamics (i.e. the 2007 global economic recession). 
 

 5 
Figure 3. Minimum production costs per ton of recycled P for supply nodes. Urb1-Str shows the prices for struvite from WWTP in 
countries with highly developed sanitation systems (BNR), where the struvite is offered for free (excl. transport costs) because of 
the maintenance and sludge handling savings by controlled struvite precipitation; Urb2-Str, from nations with slightly less 
developed sanitation systems; Urb3-Str, of source-separated urine collection and struvite precipitation in nations with 
underdeveloped sanitation systems; Urb3-Pellets, the price per tonne P (0.1%) in urban compost pellets; and Livestock shows the 10 
price per tonne P in livestock pellets (0.1% P). 
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Figure 4. Plausible phosphorus price ranges at which trade can occur at global scale for different years: observed prices (grey) 
versus modelled scenarios (Sc. 1, pink; Sc. 2, blue; Sc. 3, green). The ends of the whiskers on the grey boxes for the observed prices 
represent the maximum and minimum prices for DAP that year, the box itself shows the upper and lower quartiles for that data 
and the orange line indicates the median. For the modelled scenario the whisker-ends show the maximum and minimum prices as 5 
approximated by the model, and the box the most likely price range. Noticeable is that the price determinations for the current 
mines only scenario are in close proximity with observed price ranges. Scenario 2 and 3 are hypothetical scenarios and therefore 
cannot be compared. Nevetheless they show predictable and realistic behaviour. 
 
 10 

 
 

Figure 5. Phosphorus trade network for trade in both conventional and recycled P (scenario 2) but showing only sustainable trade 
flows. Optimal trade occurs at a phosphorus market price of 1,950 [$ t-1] with 16.81 [Mt] being traded in total, of which 0.13 [Mt] 
is traded sustainably (0.8% of total demand). 15 
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Figure 6. Phosphorus trade network for trade in recycled P only (scenario 3) at determined phosphorus market prices of 5,700 [$ t-

1] with 6.42 [Mt] being traded. All of this trade is sustainable but is only able to accommodate 38% of demand. 
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 [Mt P] [Mt P] [Mt P] [Mt P] [Mt P] 
Asia 6.75 - 2.29 - 9.30 
North America 1.98 - 0.31 - 3.24 
Europe 1.93 - 0.40 - 1.75 
Africa 2.55 - 0.53 - 2.46 
South America 3.56 - 0.22 - 2.13 
Oceania 0.10 - 0.00 - 0.00 
Australia 0.26 - 0.01 - 0.24 
World 17.11 10.47 3.75 1.73 19.11 
Table 1. Approximate continental phosphorus budgets associated to maps. 
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[$ t-1] [$ t-1] [$ t-1] 

Min. 1,900 1,900 5,100 
Opt. 2,119 1,955 5,700 
Max. 3,000 3,000 5,700 
    

Max. Amount Traded 
[Mt] 16.81 16.81 6.42 
[%] 100% 100% 38% 

 
Table 2. Price ranges and amounts traded per scenario for 2015. The minimum price represents the lower boundary of the 10 
determined market price range, the maximum its upper boundary, and the optimum represents the model approximated 
economic-optimal, most realistic, actual price. The ‘maximum amount traded’ shows how much percent of the total agricultural 
demand is accommodated in each supply scenario. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-176
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 10 April 2018
c© Author(s) 2018. CC BY 4.0 License.


